Alkali-Soluble Pectin Is the Primary Target of Aluminum Immobilization in Root Border Cells of Pea (Pisum sativum)
نویسندگان
چکیده
We investigated the hypothesis that a discrepancy of Al binding in cell wall constituents determines Al mobility in root border cells (RBCs) of pea (Pisum sativum), which provides protection for RBCs and root apices under Al toxicity. Plants of pea (P. sativum L. 'Zhongwan no. 6') were subjected to Al treatments under mist culture. The concentration of Al in RBCs was much higher than that in the root apex. The Al content in RBCs surrounding one root apex (10(4) RBCs) was approximately 24.5% of the total Al in the root apex (0-2.5 mm), indicating a shielding role of RBCs for the root apex under Al toxicity. Cell wall analysis showed that Al accumulated predominantly in alkali-soluble pectin (pectin 2) of RBCs. This could be attributed to a significant increase of uronic acids under Al toxicity, higher capacity of Al adsorption in pectin 2 [5.3-fold higher than that of chelate-soluble pectin (pectin 1)], and lower ratio of Al desorption from pectin 2 (8.5%) compared with pectin 1 (68.5%). These results indicate that pectin 2 is the primary target of Al immobilization in RBCs of pea, which impairs Al access to the intracellular space of RBCs and mobility to root apices, and therefore protects root apices and RBCs from Al toxicity.
منابع مشابه
Boron Supply Enhances Aluminum Tolerance in Root Border Cells of Pea (Pisum sativum) by Interacting with Cell Wall Pectins
Aluminum (Al) toxicity is the primary factor limiting crop growth in acidic soils. Boron (B) alleviates Al toxicity in plants, which is mainly considered to be due to the formation of Rhamnogalacturonan II-B (RGII-B) complexes, which helps to stabilize the cytoskeleton. It is unclear yet whether this is due to the increasing of net negative charges and/or further mechanisms. Kinetics of Al accu...
متن کاملCell Wall Pectin and its Methyl-esterification in Transition Zone Determine Al Resistance in Cultivars of Pea (Pisum sativum)
The initial response of plants to aluminum (Al) is the inhibition of root elongation, while the transition zone is the most Al sensitive zone in the root apex, which may sense the presence of Al and regulate the responses of root to Al toxicity. In the present study, the effect of Al treatment (30 μM, 24 h) on root growth, Al accumulation, and properties of cell wall of two pea (Pisum sativum L...
متن کاملCorrelation of Pectin Methylesterase Activity in Root Caps of Pea with Root Border Cell Separation.
We tested predictions of the hypothesis that pectin methylesterase in the root cap plays a role in cell wall solubilization leading to separation of root border cells from the root tip. Root cap pectin methylesterase activity was detected only in species that release large numbers of border cells daily. In pea (Pisum sativum) root caps, enzyme activity is correlated with border cell separation ...
متن کاملRole of Pectinesterase in pH-Dependent Interactions between Pea Cell Wall Polymers.
Extracts of etiolated pea (Pisum sativum L.) shoots converted soluble pectin from the seedlings to a trichloroacetic acid-insoluble form. This activity coincided with pectinesterase peaks separated from the extracts by gel filtration and ion exchange. The conversion of pectin to the trichloroacetic acid-insoluble form and pectinesterase exhibited identical responses to pH, with activity only ab...
متن کاملRole of nitrogen content of pea (Pisum sativum L.) on pea aphid (Acyrthosiphon pisum Harris) establishment
The leaf nitrogen content is generally accepted as an indicator of food quality and as a factor affecting host selection by phytophagous insects. The alate pea aphids (Acyrthosiphon pisum Harris, Aphididae) were given a choice among non-nodulated pea plants (Pisum sativum L.) supplied with one of four nitrate-N levels (0, 3, 15 and 30 mM). When whole plants were exposed to aphids for 7 days, th...
متن کامل